## BEE QUESTION PAPER SOLUTION

## MAY 2017 (CBCGS)

Q1] a) Find the ratio $\frac{V_{L}}{V_{s}}$ in the circuit shown below using Kirchoff's law


## Solution:-

As all the resistors are connected in parallel so total parallel resistance can be calculated as below:-
$R=\frac{1}{R}+\frac{1}{R}=\frac{R}{2}$
In this way calculating for whole circuit we get,
$R=\frac{1}{R}+\frac{2}{R}=\frac{R}{3}$
$R=\frac{1}{R}+\frac{3}{R}=\frac{R}{4}$
Hence we get the final ratio
$\frac{V_{L}}{V_{\boldsymbol{s}}}=\frac{4}{R}$


## Solution:-

The equation of the waveforms is given by $v=V_{m} \sin (\theta+\varphi)$ where $\varphi$ is the phase difference When $\theta=0, v=0.7071 V_{m}, v=0.51 V_{m}$

1. Average value of the waveform
$V_{r m s}=\sqrt{\frac{1}{\pi} \int_{0}^{\pi} v^{2}(\theta) d \theta}=\sqrt{\frac{1}{\pi}\left[\int_{0}^{\pi / 4} V_{M}^{2} \sin ^{2} \theta d \theta+\int_{\pi / 4}^{3 \pi / 4}\left(0.707 V_{m}\right)^{2} d \theta+\int_{3 \pi / 4}^{\pi} 0.51^{2} d \theta\right]}$
$V_{r m s}=\sqrt{\frac{V_{m}^{2}}{\pi}\left\{\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\frac{\pi}{4}}+0.499[\theta]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}+\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{3 \pi / 4}^{\pi}\right\}}=0.584 V_{m}$

Q1] c) Draw the phasor diagram for a three phase star connected load with lagging power factor. Indicate all the line and phase voltages and current.

## Solution:-



OUR CENTERS :

Q1] d) A 5kVA $240 / 2400 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer has the maximum value of flux density as 1 tesla. If the emf per turn is $\mathbf{1 0}$. Calculate the number of primary \& secondary turns and the full load primary and secondary currents.

## Solution:-

kVA rating $=5 \mathrm{kVA}$
$E_{1}=240 \mathrm{~V}$
$E_{2}=2400 \mathrm{~V}$
$f=50 H z$
$e_{m}=1 T$
$\frac{E_{1}}{N_{1}}=10$

1) Number of primary and secondary turns
$\frac{E_{1}}{N_{1}}=10=\frac{240}{N_{1}}$
$N_{1}=24$
$\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}$
$\frac{2400}{240}=\frac{N_{2}}{24}$
$N_{2}=240$
2) Cross-sectional area of the core
$E_{2}=4.44 f \varphi_{m} N_{2}=4.44 f B_{m} A N_{2}$
$2400=4.44 \times 50 \times 1 \times A \times 240$
A $=0.0450 \mathrm{~m}^{2}$
3) Primary and secondary currents at full load for a transformer,
$V_{1}=E_{1}=240 \mathrm{~V}$
$V_{2}=E_{2}=2400 \mathrm{~V}$

$$
\begin{aligned}
& I_{1}=\frac{k V A \text { rating } \times 1000}{V_{1}}=\frac{5 \times 1000}{240}=20.83 \mathrm{~A} \\
& I_{2}=\frac{k V A \text { rating } \times 1000}{V_{2}}=\frac{5 \times 1000}{2400}=2.08 \mathrm{~A}
\end{aligned}
$$

## Q1] e) Explain the principle of operation of DC generator

## Solution:-

DC Generator
A dc generator is electrical machine which converts mechanical energy into direct current electricity. This energy conversion is based on the principle of production of dynamically induced emf. This article outlines basic construction and working of a DC generator.

## PRINCIPLE

According to Faraday's laws of electromagnetic induction whenever a conductor is placed in a varying magnetic field (OR a conductor is moved in a magnetic field), an emf (electromotive force) gets induced in the conductor. The magnitude of induced emf can be calculated from the Emf equation of dc generator .If the conductor is provided with a closed path, the induced current will circulate within the path. In a DC generator, field coils produce an electromagnetic field and the armature conductors are rotated into the field. Thus, an electromagnetically induced emf is generated in the armature conductors. The direction of induced current is given by Fleming's right hand rule


## Q2] a) Find the current through $3 \Omega$ resistor by mesh analysis



## Solution:-



Mesh 1
$10-I_{1}-3\left(I_{1}-I_{2}\right)-4 I_{1}=0$
$8 I_{1}-3 I_{2}=10$

Mesh 2
$5-2 I_{2}-3\left(I_{2}-I_{1}\right)=0$
$3 I_{1}-5 I_{2}=-5$

From (1) and (2) we get,
$I_{1}=2.096 A \quad I_{2}=2.2580 A$
$I=I_{2}-I_{1}=2.2580-2.096=0.162$
$I=0.162 \Omega$

Q2] b) Find the current delivered by the source


1) KVL to closed path ABCDEA
$8-2\left(I_{2}\right)-\left(I_{2}-I_{3}\right)-3\left(I_{1}+I_{2}\right)=0$
$-3 I_{1}-6 I_{2}+I_{3}=-8$
2) KVL to AEFGHJA
$-10 I_{1}-2\left(I_{2}\right)-4.4 I_{3}-2 I_{4}=0$
3) KVL to HKLIMNH
$-5\left(I_{1}-I_{4}\right)-3\left(I_{3}-I_{4}\right)-2 I_{4}=0$
4) KVL to FEDIGF

$$
-\left(I_{2}-I_{3}\right)-4.4 I_{3}-3\left(I_{3}-I_{4}\right)=0
$$

From 1), 2), 3) and 4) we get,
$I_{1}=4 A \quad I_{2}=2.2 A \quad I_{3}=3.1 A \quad I_{4}=1.96 A$
Current delivered $=I_{1}+I_{2}=4+2.2=6.2$
$\mathrm{I}=6.2 \mathrm{~A}$

Q2] c) The voltage and current in a circuit are given by $\bar{V}=12 \angle 30^{\circ} \mathrm{V}$ and $\bar{I}=$ $3 \angle 60^{\circ} \mathrm{A}$. the frequency of the supply is 50 Hz . Find

1. Equation for voltage and current in both the rectangular and standard form
2. Impedance ,reactance and resistance

## 3. Phase difference, power factor and power loss

Draw the circuit diagram considering a simple series of two elements indicating their values.

Solution:-
$\bar{V}=12 \angle 30^{\circ} \quad \bar{I}=3 \angle 60^{\circ} \quad \mathrm{f}=50 \mathrm{~Hz}$

1) Equation of volt \& current in both the rectangular \& standard form.

Voltage:-
$\bar{V}=12 \angle 30^{\circ} \quad \therefore V=10.392+6 i$
Current:-
$\bar{I}=3 \angle 60^{\circ}$
$\therefore I=1.5+2.5980 i$
2) Impedance, reactance and resistance.
$\mathrm{V}=\mathrm{IV}$
$\mathrm{Z}=\frac{V}{I}=\frac{10.392+6 i}{1.5+2.5980 i}=3.4641-1.9999 \mathrm{i}$
$Z=3.4641-1.9999 i$
Comparing this with standard equation
$\mathrm{Z}=R+j X_{L}$
$R=3.4641 \Omega \quad X_{L}=1.9999$
3) Phase difference, pf and power loss.
$Z=3.4641-1.9999 i=4 \angle-29.99$
Phase difference $=29.99$
$\mathrm{Pf}=\cos \varphi=\cos (29.99)$
$\mathrm{Pf}=0.86611$ (leading)
Power loss
$\mathrm{P}=\mathrm{VI} \cos \varphi=12 \times 3 \times 0.86611$
$P=31.1799 \mathrm{~W}$


Q3] a) Find the resultant voltage and its equation for the given voltages which are connected in series.
$e_{1}=2 \sin \omega t \quad e_{2}=-\cos \left(\omega t-\frac{\pi}{6}\right) \quad e_{3}=2 \cos \left(\omega t-\frac{\pi}{4}\right)$
$e_{4}=-2 \sin \left(\omega t+\frac{\pi}{3}\right)$

## Solution:-

$\overline{E_{1}}=\frac{2}{\sqrt{2}} \angle 0^{\circ}=1.41 \angle 0^{\circ}$
$\overline{E_{2}}=\frac{-1}{\sqrt{2}} \angle-30^{\circ}=-0.7071 \angle-30^{\circ}$
$\overline{E_{3}}=\frac{2}{\sqrt{2}} \angle-45^{\circ}=1.41 \angle-45^{\circ}$
$\overline{E_{4}}=\frac{-2}{\sqrt{2}} \angle 60^{\circ}=-1.41 \angle 60^{\circ}$
$\bar{E}=\overline{E_{1}}+\overline{E_{2}}+\overline{E_{3}}+\overline{E_{4}}$
$\bar{E}=1.41 \angle 0^{\circ}-0.7071 \angle-30^{\circ}+1.41 \angle-45^{\circ}-1.41 \angle-60^{\circ}$
$\bar{E}=2.1596 \angle-59.69^{\circ}$
$e=2.1596 \times \sqrt{2} \sin (\omega t-59.69)$
$\mathrm{e}=3.0541 \sin (\omega t-59.69)$

Q3] b) Find the current through $20 \Omega$ resistor by using superposition theorem


## Solution:-

1. When 20 V is active


Applying mesh analysis
Mesh 1
$-20+20\left(I_{1}-I_{3}\right)+8\left(I_{1}-I_{2}\right)=0$
$28 I_{1}-8 I_{2}-20 I_{3}=20$
MESH 2
$6 I_{2}+8\left(I_{2}-I_{1}\right)+8\left(I_{2}-I_{3}\right)=0$
$-8 I_{1}+22 I_{2}-8 I_{3}=0$
Mesh 3
$8\left(I_{3}-I_{2}\right)+20\left(I_{3}-I_{1}\right)=0$
$-20 I_{1}-8 I_{2}-28 I_{3}=0$

From (1), (2) and (3) we get,
$I_{1}=4.791 A$
$I_{2}=3.33 \mathrm{~A}$
$I_{3}=4.375 A$
$I^{\prime}=I_{1}-I_{3}=0.416$
$I^{\prime}=0.416 A$
2. When 40 V is active


Applying mesh analysis to the circuit we get the equations as:-

## Mesh 1

$28 I_{1}-20 I_{2}-8 I_{3}=0$
Mesh 2
$-20 I_{1}+28 I_{2}-8 I_{3}=40$
Mesh 3
$-8 I_{1}-8 I_{2}+22 I_{3}=0$
From equation (5),(6) and (7) we get,
$I_{1}=8.75 A$
$I_{2}=9.58 \mathrm{~A}$
$I_{3}=6.667 A$
$I^{\prime \prime}=0.833$
3. When 30 V is active


Applying mesh analysis to the circuit we get the equations as:-

Mesh 1
$28 I_{1}-20 I_{2}-8 I_{3}=0$ $\qquad$

Mesh 2
$-20 I_{1}+28 I_{2}-8 I_{3}=0$
Mesh 3
$-8 I_{1}-8 I_{2}+22 I_{3}=30$
From (9),(10) and (11) we get,
$I_{1}=5 A$
$I_{2}=5 A$
$I_{3}=5 A$
$I^{\prime \prime \prime}=0 A$

From (12), (8) and (4) we get,
$I(20 \Omega)=0+0.833+0.416=1.249 \mathrm{~A}$
$I=1.249 A$

Q3] c) Two parallel branches of a circuit comprise respectively of 1) a coil having $5 \Omega$ resistance and inductance of 0.05 H . 2) a capacitor of capacitance $100 \mu F$ in series with a resistance of $10 \Omega$. The circuit is connected to a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find

1) Impedance and admittance of each branch
2) Equivalent admittance and impedance of the circuit
3) The supply current and power factor of the circuit

Draw its equivalent series circuit using two elements indicating their values

## Solution:-

(1) Coil $R=5 \Omega$ and $L=0.05 \mathrm{H}$
(2) $\mathrm{C}=100 \mu \mathrm{~F}$ series with $\mathrm{R}=10 \Omega$
$V=100 \mathrm{~V}=50 \mathrm{~Hz}$

1. Impedance and admittance of each branch
$\mathrm{R}=5 \Omega \quad X_{L}=2 \pi f L=2 \times \pi \times 50 \times 0.05=15.7 \Omega$
$\overline{Z_{1}}=R+j X_{L}=5+j 15.7=16.4769 \angle 72.3^{\circ}$
$\overline{Y_{1}}=\frac{1}{\bar{Z}_{1}}=\frac{1}{16.4769 \angle 72.3^{\circ}}=0.060 \angle-72.33^{\circ}$
$X_{C}=\frac{1}{2 \pi f L}=\frac{1}{2 \times 3.14 \times 50 \times 100 \times 10^{-6}}=31.8471 \Omega$
$\overline{Z_{2}}=R-j X_{C}=10-j 31.84=33.37 \angle-72.56^{\circ}$
$\overline{Y_{2}}=\frac{1}{\overline{Z_{2}}}=\frac{1}{33.37 \angle 72.56^{\circ}}=0.299 \angle 72.56^{\circ}$
2. Equivalent admittance and impedance of circuit
$\bar{Z}=\frac{\overline{Z_{1} Z_{2}}}{\overline{Z_{1}}+\overline{Z_{2}}}=\frac{\left(16.4769 \angle 72.3^{\circ}\right) \times\left(33.37 \angle-72.56^{\circ}\right)}{\left(16.4769 \angle 72.3^{\circ}\right)\left(33.37 \angle-72.56^{\circ}\right)}=39.677 \angle-64.543^{\circ}$
$\mathrm{Y}=\frac{1}{\bar{Z}}=\frac{1}{39.677 \angle-64.543^{\circ}}=0.025 \angle 64.543^{\circ}$
3. Supply current and power factor
$I=\frac{V}{z}=\frac{100 \angle 0^{\circ}}{39.677 \angle-64.543^{\circ}}=2.520 \angle 64.543$
Power factor $=\cos \varphi=\cos (-64.543)=0.4298$
Pf $=0.4298$

## Q4] a) How are DC machines classified ?

## Solution:-

Depending upon the method of excitation of field winding ,DC machine are classified into two classes:-

1) Separately excited machines.
2) Self excited machines.

## SEPARATELY EXCITED MACHINES

In separately excited machines the field winding is provided with a separate DC source to supply the field current as shown in figure.


## SELF EXCITED MACHINES

In case of self excited machines no, separate source is provided to drive the field current, but the field current is driven by its own emf generated across the armature terminals when the machine works as a generator self excited machine are further classified into the three types, depending upon the method in which the field winding is connected to the armature:
a) SHUNT WOUND MACHINES

b) SERIES WOUND MACHINES

c) COMPOUND WOUND MACHINES


Q4] b)Find the current through $10 \Omega$ resistor by using Norton's theorem


Solution:-


1. Calculation of $I_{N}$

Replacing $10 \Omega$ by short circuit
Mesh 1
$20-12 I_{1}-2\left(I_{1}-I_{2}\right)=0$
$14 I_{1}-2 I_{2}=20$
Mesh 2
$-2\left(I_{2}-I_{1}\right)-4 I_{2}-6\left(I_{2}-I_{3}\right)=0$
$2 I_{1}-12 I_{2}+6 I_{3}=0$
Mesh 3
$40-6\left(I_{3}-I_{2}\right)=0$
$6 I_{2}-6 I_{3}=-40$

From (1), (2) and (3) we get,
$I_{1}=2.5 A \quad I_{2}=7.5 A \quad I_{3}=14.166 A$
$I_{3}=I_{N}=14.166 \mathrm{~A}$

2. Calculation of $R_{N}$

Replacing voltage source by short circuits
$(12|\mid 2) \Omega=1.714 \Omega$
$1.714 \Omega+4 \Omega=5.714 \Omega$
$5.714 \Omega|\mid 6 \Omega=2.926$
$R_{N}=2.926 \Omega$


1. Calculation of $I_{L}$
$I_{L}=14.16 \times \frac{2.926}{10+2.926}=3.2053 \mathrm{~A}$
$I_{L}=3.2053 A$

Q4] c) An inductive coil has a resistance of $20 \Omega$ and inductance of 0.2 H . It is connected in parallel with a capacitor of $20 \mu \mathrm{~F}$. This combination is connected across a 230 V supply having variable frequency. Find the frequency at which the total current drawn from the supply is in phase with the supply voltage. What is the condition called? Find the values of total current drawn and the impedance of the circuit at this frequency. Draw the phasor diagram and indicate the various currents \& voltage in the circuit.

## Solution:-

$f_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{0.2 \times 20 \times 10^{-6}}}=79.617 \mathrm{~Hz}$
The frequency at which the total current drawn from the supply is in phase with the supply voltage, This condition is also called as resonance

$X_{L}=2 \pi f L=2 \times 3.14 \times 79.617 \times 0.2=100 \Omega$
$X_{c}=\frac{1}{2 \pi f C}=\frac{10^{6}}{2 \times 3.14 \times 79.617 \times 20}=100 \Omega$
$Z=R+\left(X_{L}-X_{C}\right) j=20+(100-100) j=20$
$Z=20 \Omega$
$V=I Z$
$I=\frac{V}{Z}=\frac{230}{20}=11.5 \mathrm{~A}$


Q5] a) A coil having a resistance of $20 \Omega$ and inductance of 0.2 H is connected across a 230 V 50 Hz supply . Calculate:-
i) Circuit current
ii) Phase angle
iii) Power factor
iv) Power consumed.

## Solution:-

$\mathrm{R}=20 \Omega \quad X_{L}=0.2 H$

1) Circuit current
$Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{20^{2}+0.2^{2}}=20.00$
$I=\frac{V}{Z}=\frac{230}{20.00} 11.5$
2) Phase angle
$Z=R+j X_{L}=20+j 0.2$
$Z=20 \angle 0.5729^{\circ}$
Phase angle $=0.5729^{\circ}$
3) Power factor
$\mathrm{Pf}=\cos \varphi=\cos (0.5729)=0.9999$

Power factor $=0.9999$
4) Power consumed
$\mathrm{P}=\mathrm{VI} \cos \varphi=230 \times 11.5 \times 0.999$
$P=2644.73 W$

Q5] b) A balanced three phase delta connected load draws a power of 10 kW , with a power factor of 0.6 leading when supplied with an ac supply of $440 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the circuit elements of the load per phase assuming a simple series circuit of two element.

## Solution:-

$\mathrm{P}=10 \mathrm{~kW} \quad V_{L}=440 \mathrm{~V} \quad \mathrm{pf}=0.6$ (leading)

For delta connected load,

1. Values of circuit elements,
$V_{L}=V_{p h}=440 \mathrm{~V}$
$\mathrm{P}=\sqrt{3} V_{L} I_{L} \cos \varphi$
$10 \times 10^{3}=\sqrt{3} \times 440 \times I_{L} \times 0.6$
$I_{L}=21.86 A$
$I_{p h}=\frac{I_{L}}{\sqrt{3}}=\frac{21.86}{\sqrt{3}}=12.62 \mathrm{~A}$
$Z_{p h}=\frac{V_{p h}}{I_{p h}}=\frac{440}{12.62}=34.86 \Omega$
$R_{p h}=Z_{p h} \cos \varphi=34.86 \times 0.6=20.916 \Omega$
$X_{p h}=Z_{p h} \sin \varphi=20.916 \times \sin \left(\cos ^{-1} 0.6\right)=16.73 \Omega$
2. Reactive volt-amperes drawn
$\mathrm{Q}=\sqrt{3} V_{L} I_{L} \sin \varphi=\sqrt{3} \times 440 \times 21.860 \times 0.8=30.29 \mathrm{kVAR}$

## Q5] c) Draw and explain the phasor diagram of a single phase transformer.

## Solution:-



Phasor diagram:-

Since the flux $\varphi$ is common to both the windings, $\varphi$ is chosen as a reference phasor. From emf equation of the transformer, it is clear that $E_{1}$ and $E_{2}$ lag the flux by $90^{\circ}$. Hence, emf's
$E_{1}$ and $E_{2}$ are drawn such that these lag behind the flux $\varphi$ by $90^{\circ}$. The magnetising component $I_{\mu}$ is drawn in phase with the flux $\varphi$. The applied voltage $V_{1}$ is drawn equal and opposite to $E_{1}$ as $V_{1}$. The active component $I_{w}$ is drawn in phase with voltage $V_{1}$. The phasor sum of $I_{\mu}$ and $I_{w}$ gives the noload current $I_{0}$.


1) Transformer when excited at no load, only takes excitation current which leads the working Flux by Hysteretic angle $\alpha$.
2) Excitation current is made up of two components, one in phase with the applied Voltage V is called Core loss component $\left(I_{c}\right)$ and another in phase with the working Flux $\varnothing$ called Magnetizing Current (Im).
3) Electromotive Force (EMF) created by working Flux $\varnothing$ lags behind it by 90 degree.


Q6] a) Explain the various losses of a single phase transformer

## Solution:-

There are two types of losses in a transformer:

1. Iron or core loss
2. Copper loss

IRON LOSS:
This loss is due to the reversal of flux in the core. The flux set-up in the core is nearly constant. Hence, iron loss is practically constant at all the loads, from no load to full load. The losses occurring under no-load condition are the iron losses because the copper losses in the primary winding due to no-load current are negligible. Iron losses can be subdivided into two losses:

1. Hysteresis loss
2. Eddy current loss

This loss is due to the resistance of primary and secondary windings
$W_{c u}=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}$
Where, $R_{1}=$ primary winding resistance
$R_{2}=$ secondary winding resistance
Copper loss depends upon the load on the transformer and is proportional to square of load current of kVA rating of the transformer.

Q6] b) Two wattmeter connected connected to measure power in a three phase circuit using the two wattmeter method indicate 1250 W and 250 W respectively. Find the total power supplied and the power factor to the circuit: when
i) Both the readings are positive.
ii) When the latter reading is obtained by reversing the connection of the pressure coil.

## Solution:-

$W_{1}=1250 \mathrm{~W} \quad W_{2}=250 \mathrm{~W}$

1) Power factor of the circuit when both readings are positive
$W_{1}=1250 \mathrm{~W} \quad W_{2}=250 \mathrm{~W}$
$\tan \varphi=\sqrt{3} \frac{W_{1}-W_{2}}{W_{1}+W_{2}}=\sqrt{3} \frac{(1250-250)}{(1250+250)}=0.667$
$\varphi=33.703^{\circ}$
Power factor $=\cos \varphi=\cos (33.703)=0.8319$
2) Power factor of the circuit when the latter reading is obtained after reversing the connection to the current coil of one instrument.
$W_{1}=1250 W \quad W_{2}=-250 \mathrm{~W}$
$\tan \varphi=\sqrt{3} \frac{W_{1}+W_{2}}{W_{1}-W_{2}}=\sqrt{3} \frac{(1250+250)}{(1250-250)}=1.5$
$\varphi=56.3099^{\circ}$
Power factor $=\cos \varphi=\cos \left(56.3099^{\circ}\right)=0.5547$

Q6] c) A $\mathbf{2 0 0 / 4 0 0} \mathrm{V}, \mathrm{Hz}$ single phase transformer gave the following test results:
OC test: 200V 0.7A 70W (on Iv side)
SC test: 15V 10A 85W(on hv side)
Obtain the parameters and draw the equivalent circuit of the transformer as referred to the primary.

Solution:- 1) Equivalent circuit of the transform and parameters
From OC test(meters are connected on LV side i.e. primary)
$W_{i}=70 w \quad V_{1}=200 \mathrm{~V} \quad I_{0}=0.7 \mathrm{Am}$
$\cos \varphi_{0}=\frac{W_{i}}{V_{1} I_{0}}=\frac{70}{200 \times 0.7}=0.5$
$\sin \varphi_{0}=\left(1-0.5^{2}\right)^{0.5}=0.866$
$I_{w}=I_{O} \cos \varphi_{o}=0.7 \times 0.5=0.35$
$R_{O}=\frac{V_{1}}{I_{w}}=\frac{200}{0.35}=571.428 \Omega$
$I_{\mu}=I_{o} \sin \varphi_{o}=0.7 \times 0.866=0.6062 \mathrm{Am}$
$X_{o}=\frac{V_{1}}{I_{\mu}}=\frac{200}{0.6062}=329.924 \Omega$
From SC test (meters are connected on HV side i.e. secondary)
$W_{s c}=85 w \quad V_{s c}=15 \mathrm{~V} \quad I_{s c}=10 \mathrm{~A}$
$Z_{02}=\frac{V_{s c}}{I_{s c}}=\frac{15}{10}=1.5 \Omega$
$R_{02}=\frac{W_{s c}}{I_{S C}^{2}}=\frac{85}{10^{2}}=0.85 \Omega$
$X_{02}=\left(Z_{02}{ }^{2}-R_{02}{ }^{2}\right)^{0.5}=\left(1.5^{2}-0.85^{2}\right)^{0.5}=1.235 \Omega$
$K=\frac{400}{200}=2$
$R_{01}=\frac{R_{02}}{K^{2}}=\frac{0.85}{4}=0.2125 \Omega$
$X_{01}=\frac{X_{02}}{K^{2}}=\frac{1.235}{4}=0.3087 \Omega$


OUR CENTERS :

